
DEUDS: Data Extraction Using DOM Tree and
Selectors

Vinayak B. Kadam , Ganesh K. Pakle

 Department of Information Technology,

 SGGS IE & T, Nanded,
Maharashtra, India-431606

Abstract— Web data analysis applications such as extracting
mutual funds information from a website, daily extracting
opening and closing price of stock from a web page involves
web data extraction. Every time you need analyze data, you
need to visit number of web sites. It is very time consuming
process to construct wrapper to visit those sites and collect
data. In this paper, we propose technique called DEUDS, a
page level data extraction system that automatically discovers
extraction pattern from web pages for selected data section
and extracts data. DEUDS uses visual cues to identify data
records while ignoring noise items such as advertises and
navigation bars.

Keywords— DOM Tree, CSS selector, semi structured web
pages and Web data extraction.

I. INTRODUCTION

 Different Web sites contain information on various
topics in various formats. Large amounts of effort are often
required for a user to manually locate and extract data of
interest from the Web pages. For example, great efforts are
needed to generate Web information gathering crawlers,
comparison-shopping agents, and news bots, etc. A
previous approach for extracting structured data from web
pages was to write programs, called “wrappers” or
“extractors” or “crawler”, to extract the contents of the Web
pages based on a priori knowledge of their format e.g. tag
tree structure. In other words, we have to observe the
structure of web page and write programs for each Web site.
It is important to note that web page belonging to same web
site contains same structure or template. Templates is the
model for all pages, occur quite fixed as opposed to data
values which changes across pages.

However, programming wrappers require manual coding
which generally requires labour. And also, the format of
Web pages is often subject to change, maintaining the
wrapper can be expensive and impractical. Extracting
structured data enables us to integrate data from multiple
web pages to pose more complex queries and to provide
value-added services, e.g., comparative shopping. Lots of
the existing work in extracting data is based on identifying
repeated patterns. We differentiate the existing approaches
based on where they look for these patterns and how they
use them in data extraction. Wrappers are generated
automatically by number of researchers, e.g. WIEN [3],
Softmealy [2], Stalker [4] etc.

Existing approaches are also depends on template of web
page. Finding structure of template requires multiple web
pages or a single web page containing multiple pages as

input. When multiple sample web pages are given, the
extraction target aims at page-wide information (e.g.
RoadRunner [5] and EXALG [8]). RoadRunner assumes
that site generation is process of encoding the original
database content into strings of HTML code. As a result,
data extraction is thought as a decoding process.

EXALG deduces the template and uses it to extract the
set of values from the encoded pages as an output. EXALG
detects the unknown template by using the two techniques
differentiating roles and equivalence classes. When single
web pages are given, the extraction target is usually
targeted to record wide information (e.g., IEPAD [9],
DELA [7], and DEPTA [6]), which involves issue of
record-boundary detection. IEPAD generates extraction
patterns from unlabeled Web pages [31]. This method
assumes that if a Web page contains multiple data records
to be extracted, they are displayed regularly using the same
template. if the page is well encoded repetitive patterns can
be found. In IEPAD PAT trees data structure is used, which
is a binary suffix tree to discover repetitive patterns in a
Web page. FiVaTech [20] proposes method to extract
template data from web page which contains fixed template.

DELA uses two consecutive steps to generate wrappers.
First, Data-rich Sections are identified from Web pages by
comparing the DOM trees for two Web pages. Second,
repeated patterns are found using suffix trees.

DEPTA (Data Extraction based on Partial Tree
Alignment): DEPTA founds repeated substring by
comparing only adjacent substrings with starting tags
having the same parent in the HTML tag tree.

Approaches [10, 6, 11, 12, 13, and 14] use the tag tree
representation of a web page to identify repeated patterns.
Before performing extraction these tools turn web page into
tag tree. This hierarchal representation of the source code is
very useful. As we know that, the tag tree was designed for
the browser to use when displaying the page, and
unfortunately there may be some mismatched tag.

W4F (Wysiwyg Web Wrapper Factory) is a Java toolkit
to generate Web wrappers [13]. Wrapper development
process in W4F consists of three independent steps:
retrieval, extraction and mapping step. In the retrieval phase,
document to-be processed is retrieved and fed to an HTML
parser that constructs a parse tree. In the extraction phase,
extraction rules are applied on the parse tree to extract
information. Mapping phase is used to export NSL
structures. In XWRAP [14] wrapper generation process
includes two phases: structure analysis, and source-specific
XML generation. First, XWRAP reads, and generates a

Vinayak B. Kadam et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1403-1410

www.ijcsit.com 1403

tree-like structure of the web page. Then system identifies
data regions. In the second phase, the system generates a
XML template file, and then constructs a source-specific
XML generator, XWRAP.

Approaches [17, 16, 15] identify visually repeated
patterns using additional information displayed on a
rendered page. However, they all have limitation: they
depend on direct access to either the source code or the tag
tree. The approach in [18] is the first that uses visual
features for data record extraction. But, this approach has
several limitations like how it deals with noise items on a
web page. Approaches [18, 16, 6, 15] divides page into
sections, referred to as the data-rich section, which contains
all of the data records. But, identifying the data section can
be problematic because, unwanted noise items incorrectly
included in, the data section. May be it is possible to
identify the wrong sub-section of the page entirely.

In this paper, novel approach is presented to extract data,
which uses visual cues and CSS Selector for attributes of
DOM tree to construct pattern. This paper proposes a three-
step strategy to solve the problem of data extraction.

1) In this step, page is divided into sections. Section is
nothing but the part of page containing useful data. Some
technique uses MDR [10] for dividing page into section.
We are using visual cues to find data records. Visual
information helps in two ways:

a) It enables to identify gaps that separate data records,

which helps to segment data records correctly because
the gap within a data record (if any) is typically smaller
than that in between data section.

b) System identifies data records by analyzing HTML tag
trees or DOM trees [19]. A tag tree is built by
following the nested tag structure in the HTML code.
However, we have to take care of missing or ill
formatted tags. The visual or display information can
be obtained after the web page is rendered by a Web
browser, it also contains information about the
hierarchical DOM tag tree structure. In our work,
instead of analyzing the HTML code, visual
information i.e. the locations on the screen at which
tags are rendered is utilized to infer the structural
relationship among tags and to construct a tag tree and
to get selectors. As long as the browser is able to render
a page correctly, its tag tree can be built correctly.

2) In second step, grammar or more precisely pattern is
generated using DOM tree and selectors from DOM Tree.
3) In third step, data is extracted from web pages using the
grammar generated in second step.

Our three step approach called DEUDS (Data Extraction
Using DOM Tree and Selectors) is different from existing
approaches in two different ways. First, how it identifies
data section and second, how it construct pattern to extract
data. We propose a visual approach which identifies
sections of data, and also a single data item, which is a
basic content block in a data record. And also, our visual
approach directly retrieve positional information and visual

features of each item on the page, avoiding the need to
interpret increasingly complex HTML source code and tag
trees. Our proposed technique DEUDS presents number of
advantages over existing systems.
a) Here, User can generate extraction rules with few

mouse clicks.
b) Identifying data region using visual cues is very simple,

because cost of comparing DOM tree is reduced.
c) It provides separation of extraction pattern generation

and wrapper generation. This separation allows
wrapper to use new extraction rules.

The rest of the paper is organized as follows: The
fundamentals architecture of our proposed DEUDS
approach is presented in Section 2. Section 3 presents
details of web page renderer. In Section 4 details of section
selector are provided. Section 5 gives details of how to
construct pattern and how to retrieve data with that pattern.
Experimental evaluation is reported in Section 6. Related
work is presented in section 7 and finally, Section 8
concludes the paper.

II. SYSTEM OVERVIEW

The system DEUDS includes three components, a web
page renderer which accepts an input Web page. After a
web page is displayed using browser, DOM tree creator
create DOM tree. Section selector divides web page into the
Data sections, from which you can select particular record
or whole data section. Pattern generator generates patterns
based on data section selected. Here patterns generated are
relative not absolute, so no need to worry about the change
of structure of web page.

The pattern generator includes a pattern generation from
attributes, and a pattern validator. The pattern generator
retrieves patterns discovered in a Web page. The graphical
user interface is used by users to view the data extracted by
extraction rule. As user selects extraction rule conforming
to his information desire, the extractor phase can use it to
extract information from similar web pages.

Web Page Renderer is the first component, it performs

three tasks. (i) It accepts URL by user issues an http request
and fetches corresponding document. This web page is used
to derive grammar. (ii) It cleans bad and ill formatted html
tags. (iii) It generates DOM tree from retrieved web page.

Section Selector divides input web page in to data

section. Here we dividing page into different sections like
list section, single valued section, multi valued section etc.
it performs three tasks. (i) Identifying data section in
retrieved web page. (ii) Identifying important semantic
tokens and attributes and there logical path in DOM tree.
(iii) Identifying useful hierarchical structure.

 Pattern Generator is responsible for generating
extraction pattern to extract data of interest. It performs
three tasks. (i) It generates pattern from token and attributes
retrieved in section selector. (ii) Pattern is validated based
on uniqueness of pattern in document. (iii) Data is extracted
using pattern.

Vinayak B. Kadam et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1403-1410

www.ijcsit.com 1404

Fig 1 shows the overview of the system. Web page from
which we want to extract data is given as input to DEUDS.
Web page renderer visualize input page from which we can
see the various features of page or more precisely different
region containing data to be retrieved. Section selector
selects data region called section using visual cues like
boundary, width etc. when we select section, pattern
generator create pattern by using selectors. Data extractor
uses pattern derived by pattern generator to extract data and
store this data in the database. In next few sections, we will
see the details of each sub system.

 Fig 1 System Overview

III. WEB PAGE RENDERER

The system DEUDS includes three components, a web

page renderer which accepts an input Web page. After a
web page is displayed using browser, DOM tree creator
create DOM tree. Section selector divides web page into the
Data sections, from which you can select particular record
or whole data section. Pattern generator generates patterns
based on data section selected. Here patterns generated are
relative not absolute, so no need to worry about the change
of structure of web page.
A. URL Acceptor

Your Here we are giving URL of page. When browser
receives URL, browser sends http request to access
requested document from web. We know that web page is
made of the tag tree and the Cascading Style Sheet (CSS) of
the page. A layout engine generates page from nodes of tag
tree, according to the styles contained in the CSS. This
process, called rendering, draws a rectangular box around
the minimum boundary of each visible node on the page.
We refer to each box as a visual block. The position of each
visual block is represented by its four borders in the four
directions on the two-dimensional plane. The outer block
contains many inner blocks. The inner block which does not
contains any further inner blocks is called basic block,
which may contains data value. Basic blocks are shown by
red color outline. From fig 2 we can see that outer blocks
contain many inner blocks.

Fig 2 Web page renderer showing data blocks with red color outline

B. REPAIRING ILL TAGS
As soon as document is fetched, process of repairing bad

or ill formatted tag begins. This process inserts missing tags,
removes useless tags e.g. tag starting with !pr is end tag
having no start tag. It also checks proper nesting of all tags.
This process of cleaning document is applicable to all html
pages.

C. Building DOM Tree

After bad and ill formatted tags are removed from web
page source code, we can use this code to build DOM tag
tree. Each html element consists start tag, optional attributes,
optional embedded content, and end tag. DOM API is used
to construct the tree for web page. Each page contains zero
or one doc type nodes, one root element node, and zero or
more comments or processing instructions; the root element
serves as the root of the tree for the page. Parser converts
source document into syntactic token, from this token tree
is generated. Fig 3 shows sample html code and DOM tree
for that code. From fig 3 we can see how all elements,
corresponding attributes, and content is added to DOM tree.

IV. SECTION SELECTOR

This section focuses on the segmenting the Web page to
identify individual data section. In this step we do not
extract any data records. When we select section,
simultaneously attributes of selected sections are also
retrieved from DOM tree. Here we constructed DOM tree
of rendered page using SWT. We already seen that web
page is made up of basic blocks, as result data section is
also made up of these blocks. Data section may contain
many basic blocks, which actually contains data values. We
designed java script to highlight the selected data section or
selected basic block.

Vinayak B. Kadam et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1403-1410

www.ijcsit.com 1405

Fig 3 source code and corresponding DOM tree Fragment

As shown in fig 1 section selection consist of three steps;
Step 1: Identifying data section or region of interest on page

This step is performed with the help of interactive
interface. This interface helps user to identify sections in
web page including table region, paragraph region, and list
region etc. Output from this step, is that we obtain
extraction pattern for that particular region. The detail
process to construct pattern is given in next section. Fig 4
shows selected section, selected section is highlighted with
gray color.
Step 2: Identifying important semantic tokens

In this step, Process collects semantic tokens, which
permits extractor to walk through DOM tree and highlight
semantic tokens of interest in source page.
Step 3: Identifying useful hierarchical structure.

In this step, hierarchical parent structure of selected
element is retrieved. The output of this step is set of
semantic tokens, which can be used to resolve ambiguity of
pattern (if any).

In summary, section selector analyses DOM tree and
formatting information of web page to extract semantic
token of interest. In next section we will see, how to
construct pattern and how to extract data with that pattern.

Fig 4 Table as selected section to retrieve data

V. PATTERN CONSTRUCTOR AND DATA EXTRACTOR

This section focuses on constructing pattern. Before
seeing details of algorithm to construct pattern, we will see
some basics of CSS selector and information of DOM tree
nodes. DOM tree nodes are classified in about 12 types as
attr, element, text, cdatasection, entity reference, entity,
comment, document, document type, processing instruction,
document fragment, and notation. Out of which we are
considering attr node only to extract data. Node type of
attribute node is attr, node name returns attribute name, and
node value returns attribute value. We are using attribute
nodes as a CSS selector, to construct pattern. There are
various types of CSS selectors like Universal selector,
attribute selectors, descendant selectors, type selectors,
child selectors, adjacent sibling selectors, id selectors, and
class selector.

A. Attribute Selector

Here we will first see attribute selector in detail.
Attribute selector allows us to specify rules that match
elements which have certain attributes defined in the source
document. Attribute selector’s matches in following four
ways:
i. [att]

In this type when the element sets the “att” attribute,
whatever the value of the attribute is matched.

ii. [att=val]
In this type when the element has “att” attribute
value is exactly “val” is matched.

iii. [att~=val]
This type represents an element with the “att”
attribute whose value is a white space-separated list
of words, one of which is exactly “val”. If “val”
contains white space, it will never represent anything.
If “val” is the null string, it will not represent
anything.

Vinayak B. Kadam et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1403-1410

www.ijcsit.com 1406

iv. [att|=val]
This type represents an element with the “att”
attribute, its value either being exactly “val” or
beginning with “val” immediately followed by “-”.
This is to permit language sub code matches. E.g. the
following rule will match for values of the “lang”
attribute that begin with “en”, including “en”, “en-
US”, and “en-cockney”: *[lang|="en"];

B. Class Selectors
Along with attribute selectors we can also use class

selector. We can use the period (.) notation as an alternative
to the ~= notation for representing the class attribute. Thus,
div.value and div[class~=value] have the same meaning.
The attribute value must be immediately preceded by
“period” (.). e.g. “.intro”: Selects all elements with
class=”intro”.
C. Id Selectors

Document may contain attributes that are declared of
type ID. Attributes of type ID is special because two
attributes never have same value. An ID attribute can be
used to uniquely identify its element in document. In
HTML all ID attributes are named by “id”. The ID attribute
of a document allows us to assign an identifier to one
element instance in the document tree. An element is
matched using CSS ID selectors based on its identifier. A
CSS ID selector contains a “#” immediately followed by
the ID value, which must be an identifier. e.g. “#firstname”
- Selects the element with id=”firstname”

Along with attribute, class and id selector other selectors
like universal selector (*), child selector (>), adjacent
selector (+) etc. are used to construct pattern. As shown in
fig 4 the web page of Indian rail which contain the
information about rajdhani train names with details, which
is rendered by our web page renderer. Rendered web page
contains all the data about the train in table, this table is
highlighted in gray. The small part of DOM tree for
document rajdhani train details is shown in fig 5. From fig 5
we can see that table contains different attributes like width,
cellspacing, cellpading, border, and class. These attributes
are shown by dashed lines in figure.

Fig 5 DOM Tree Fragment of rajdhani train details page

As shown in fig 4 when we select the table here we

called section containing details of web page, rajdhani train
names is highlighted with gray color, and simultaneously
all the attributes of table are retrieved. For retrieving
attributes we used DOM tree.

Let’s assume that given input page “p”, contain data in
specific section, this section is nothing but the some tag or
element of DOM tree. “l” is the list to store the attribute
names and “av” is the list to store attribute values. Input to
algorithm is input web page and selected element.
Algorithm AttributeRetrival gives details of how we are
extracting attribute from web page.

Algorithm AttributeRetrieval (p,t)
// p is the given input page
// t is the selected element
// a is current retrieved attribute
// n is name of retrieved attribute
// v is value of retrieved attribute
1. Initialize l,av; i=0;
2. for each attr a of selected element t
3. retrieve name n of a;
4. retrieve value v of a;
5. l[i]=n;
6. av[i++]=v;
7. end for
8. return l, av;

Algo 1 Algorithm to retrieve the attributes

Once we have all attributes of selected element, we can
now construct the pattern. Here, we will see the algorithm
to construct the pattern. As already stated, data region
containing data is also sub tree of DOM tree. All the data to
be extracted is under one element of DOM tree. Data is
usually contained under block level tag such as table, list
etc. for constructing pattern we need retrieve name of
selected element from DOM tree.

Here we are taking queue data structure “p” to construct
pattern. Two lists “l” and “av” which are retrieved from
AttributeRetrieval algorithm are given as input to the
algorithm. In queue “q” we first insert the retrieved element
name, then we insert all the attributes in the form (a, v). In
this way we constructing pattern to extract data. Details of
algorithm are given below.

From retrieved attributes by algorithm 1 pattern is
constructed by algorithm 2. Below is the pattern for
selected table:
table[width=100%][cellspacing=1][cellpadding=0][border=0][cla
ss=table_border].

Algorithm ConstructPattern (p, t, l, av)
// p is the given input page
// t is the selected element
// l is list containing name of attributes
// av is list containing values of attributes.
1. Initialize p; i=0;j=0;
2. n=sizeOf(l);
3. p[j++]=insert (t.name);
4. for each i from 0 to n
5. p[j++]= insert ([);
6. P[j++]= insert (l[i]);
7. p[j++]= insert (]);
8. p[j++]= insert (=);
9. p[j++]= insert ([);
10. P[j++]= insert (av[i]);
11. p[j++]= insert (]);
12. end for
13. return p;

Algo 2:Algorithm to construct pattern.

Vinayak B. Kadam et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1403-1410

www.ijcsit.com 1407

D. Data Extractor
In this section we will see, how data is retrieved with help
of pattern generated in previous section. Here we derive
two cases to extract data. We are making two cases based
on uniqueness of identifying data section from pattern.
Before deriving two cases we will first see the algorithm to
extract data. Algorithm is given below.

Algorithm ExtractData (q , T, l)
// l is list containing attributes
// q is the pattern derived by algo 2
// {a,v} is the attribute value pair.
// T is the DOM tree for page.
1. Flag=false;n=0;
2. retrieve element e from q
3. match e in T
4. if match found then
5. n= sizeOf(l);
6. For each i from 0 to n
7. retrieve {a,v} pair
8. match {a,v} in T in same sub tree where
 e is matched
9. endfor
10. endif
11. retrieve text from matched sub tree
12. return text

Algo 3 Algorithm to retrieve the attributes

Input to algorithm is “q” data structure containing pattern,

tag tree, and list “l”. In above algorithm we are first
matching the selected element in tree. When match is found,
we are matching the attributes. When all attributes and
element is matched we are retrieving all the data within that
element. Now, we will see two cases to extract data.

Case 1: Pattern identifies two or more data section.

In this case there is ambiguity in identifying the correct
section with given pattern, e.g. consider the page containing
more than one data record. Let’s say page contains two
tables, one is under div tag another is under td tag, and both
of these tables have the same number of attributes, and also
the values of all attributes are same. so pattern constructed
by algorithm 2 fails to identify the correct data section
uniquely. Consider the fig 6 formulating the problem.

As shown in fig 6 both tables have same number of
attribute and also, name and value of each attribute is same.
So when we start retrieving data, data from both sections is
retrieved. Because, in data retrieval module we are first
matching element name in DOM tree, when element is
found then we are matching the attribute of pattern with the
attribute of element in DOM tree. Here pattern matches two
time in document so there is ambiguity in retrieving data.
Here we need the pattern validator.

E. Pattern Validator

When there is ambiguity in retrieving data, we need to
validate pattern, and we need to change the pattern unless
user gets the intended data. To solve the problem, we are
adding parent element to pattern, this process continues still

we get the unique pattern which will give us only required
section. When we add parent element to our pattern then we
obtains unique patterns which will point to intended section.
E.g.
td>table[width=100%][cellspacing=1][cellpadding=0][b
order=0][class=table_border].

Parent element of another table is „div‟ so ambiguity is
resolved. Now, we can extract data in usual way by using
our algorithm.
Case 2: Pattern uniquely identifies the correct data section.

In this case we can directly use pattern to extract data, as
there is no issue of ambiguity. Here directly element is
matched in DOM tree, when element is matched then all
attributes from pattern are matched with specific sub DOM
tree. Text values from this sub tree are retrieved. In this way,
we get all required data from web page.

Let’s see the one example to extract data with given
pattern. Assume that input page to extract data is page
shown in fig 4. We want to extract data from selected table.
Selected table is highlighted with gray color. Pattern to
extract data from this table is:

table[width=100%][cellspacing=1][cellpadding=0][bord
er=0][class=table_border].

We designed pattern in relative type, so that we don’t
need to start from root of DOM tree. If pattern is absolute
we need to start from root node, and every time, we need to
follow same path from root to that node. So if some
element is added in page or page structure changes then
absolute pattern fails.

Fig 6: DOM tree of page showing ambiguity in indentifying section

Our pattern is relative, so we start with matching selected
element in DOM tree, in above pattern selected element is
table, so table node is matched in DOM tree. But there may
be one or more table nodes in DOM tree, so we need use
remaining attribute from pattern to match specific table
element. After table element is matched we start to match
attribute named width in DOM tree. When this attribute is
matched exactly, we match remaining attributes in same
way. When whole pattern is matched, we start retrieving the
text values from matched sub tree.

Vinayak B. Kadam et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1403-1410

www.ijcsit.com 1408

VI. EXPERIMENTS
This section evaluates our system, DEUDS (Data
Extraction Using DOM Tree and Selector), which
implements the above discussed algorithms. The evaluation
of system consists of two parts:
1. Data record section identification: In this step we are

verifying that, proposed system correctly identifies the
data record section or not.

2. Data record extraction: In this step, we are verifying
that proposed system correctly extracts data or not. Use
no additional space above the subsection head.

A. Setup
Experiments are performed on a machine equipped with

an Intel Core 2 Duo processor working at 2.40 GHz
clock speed and 1066 MHz FSB, with 3 GB of RAM.
Operating system Windows 7 and Java Development Kit
1.7 are used for experiment.

Experiments are performed on 290 different input pages,
collected from different web sites. These pages were
obtained as follows:
 RoadRunner [5]: (19 collections) These are all the

collections available at RoadRunner site [22].
 RISE [23]: (6 collections) Distributed repository called

RISE, consist of online information sources that are
used for the empirical analysis of learning algorithms
that generate extraction patterns. Only 6 out of the 10
collections from RISE are used in our extraction
problem.

 The rest web pages are crawled by us from various
well-known sites like indianrail, bookboon, flipkart,
dejavutrends.com and shopping.yahoo.com etc.

B. Evaluation
Table 1 shows performance of our proposed technique.

SI indicates section identification, DE indicates data
extracted. An cr and pcr means correct and partially correct
respectively, whereas wr means wrong. Column 1 of table 1
contains the information about the page source i.e. URL of
page. Column 2 indicates description of pages. Column 3
indicates number of pages from each source. Column 4 and
5 indicates number of pages from which data section is
correctly identified and number of pages from which data
section is partially correct or wrongly identified. Column 6
and 7 indicates number of pages from which data section is
correctly retrieved and number of pages from which data
section is partially correct or wrongly retrieved. For
measuring performance of our system, we used 290 pages.
Out of 290 pages, data section of 280 pages is correctly
identified; hence data extracted from 280 pages is also
correct. For 10 pages DEUDS failed to identify data
sections correctly, so data retrieved from these 10 pages is
partially correct. For measuring performance we considered
partial correct data as wrong data. After evaluation we got
values of precision and recall as 96.55%. From experiments,
we got conclusion that, our system is 100% efficient for
web pages containing data in table format or list format.

We are comparing our system with RoadRunner [5].
Experiment shows that our system is much efficient than

RoadRunner in detecting sections and extracting data. We
used same input pages, as those are used for evaluating
RoadRunner. RoadRunner failed to extract correct data
from about 21 pages. Data retrieved by RoadRunner is
partial from collection “national team info” from uefo.com.
So performance of our system, DEUDS is much better than
Road Runner.

VII. RELATED WORK
Lot of recent work is there related to Information

Extraction, classified along different parameters: targeted
information sources, automation degree, and schema
identification. Section 1 explained some of the related work.
Here we will see the differences between our work and,
RoadRunner.

Our work is related to the ROADRUNNER [5]. Model of
page creation is used in RoadRunner, that is similar to ours
data section identification. RoadRunner assumes site
generation is process of encoding the database content into
HTML code. As a consequence, data extraction is
considered as a decoding process. As a result, generating a
wrapper for a set of HTML pages corresponds to inferring a
grammar for the HTML code. RoadRunner begins with the
input page as its initial template. Then, It checks for each
subsequent pages that page can be generated by the current
template. If it cannot be, it modifies its current template.
There are several limitations to the RoadRunner approach:
1. RoadRunner assumes that every HTML input pages is

generated by the template. This assumption is crucial in
RoadRunner to check template of each page. For many
web-sites pages, this assumption is clearly wrong since
html tags can also be added in between data values.

2. RoadRunner might fail to produce any output if there is
change in the input template.

3. Complicated operations are performed to search a new
template; When RoadRunner finds that the current
template does not generate an input page.

VIII. CONCLUSIONS
In this paper, we proposed a new approach for

constructing pattern to extract data, called DEUDS to solve
problem of page-level data extraction. Our proposed
approach works in three stages web page renderer, Section
selector, and Pattern generator. We have already seen the
details of each stage. In earlier work, extraction rules are
learned from training examples. In this paper, we presented
an unsupervised approach to pattern discovery.

Many approaches have been proposed by different
researchrs for Web data extraction ([21],[1] represents
survey on web data extraction tool),but few of them works
(RoadRunner, EXALG and FiVaTech) solve this problem
at a page level. Proposed technique gives very good result
in extracting data, and also pattern generated by our
technique is stable. Pattern generated by our technique is
stable because, we are generating pattern in relative manner
not in absolute manner. In future work, we plan to extend
our approach to extract hidden data, and to automatic label
extracted data.

Vinayak B. Kadam et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1403-1410

www.ijcsit.com 1409

TABLE I Performance measure of DEUDS system
Page information SI DE

Page src Page info Num cr wr/pcr cr wr/pcr
amazon.com pop artist by style 19 19 0 19 0
amazon.com cars by brand 21 21 0 21 0
buy.com product subcategories 20 20 0 20 0
buy.com product information 10 0 10 0 10
rpmfind.net packages by distribution 20 20 0 20 0
rpmfind.net packages by maintainer 20 20 0 20 0
uefa.com players in the national team 20 20 0 20 0
uefa.com national team info 20 20 0 20 0
wine.com accessories 11 11 0 11 0
wine.com wines by producers 10 10 0 10 0
majorleguebaseball.com players by initial 10 10 0 10 0
majorleguebaseball.com player statistics 10 10 0 10 0
nba.com team stats 10 10 0 10 0
nba.com team roaster 10 10 0 10 0
RISE LA Restaurants 28 28 0 28 0
RISE Pharma Web 10 10 0 10 0
RISE Corel 21 21 0 21 0
Indianrail.com Indian rail 4 4 0 4 0
Flipkart.com Eng. books 1 1 0 1 0
Dejavutrands.com Computers and laptops 5 5 0 5 0
shopping.yahoo.com laptop 10 10 0 10 0

 total 290 280 10 280 5
 Precision 280/290 96.55% Recall 280/290 96.55%

REFERENCES
[1] C.-H. Chang, M. Kayed, M.R. Girgis, and K.A. Shaalan, “Survey of

Web Information Extraction Systems,” IEEE trans. Knowledge and
Data Eng., vol. 18, no. 10, pp. 1411-1428, Oct. 2006.

[2] C-N. Hsu and M-T. Dung, “Generating finite-state transducers for
semi-structured data extraction from the Web Information
Systems,” 23(8):pp. 521–538, 1998.

[3] N. Kushmerick, D. Weld, and R. Doorenbos, “Wrapper induction
for information extraction,” In Proceedings of the 15th International
Joint Conference on Artificial Intelligence (IJCAI), 1997.Tavel, P.
2007 Modeling and Simulation Design. AK Peters Ltd.

[4] I. Muslea, S. Minton, and C. Knoblock, “A hierarchical approach to
wrapper induction,” In Proceedings of the 3rd International
Conference on Autonomous Agents (Agents ‟99), Seattle, WA,
1999.

[5] V. Crescenzi, G. Mecca, and P. Merialdo, “ RoadRunner: towards
automatic data extraction from large Web sites,” Proceedings of the
26th International Conference on Very Large Database Systems
(VLDB), Rome, Italy, 2001, pp. 109-118.

[6] Y. Zhai and B. Liu, “Web Data Extraction Based on Partial Tree
Alignment,” Proc. Int‟l Conf. World Wide Web (WWW-14), 2005,
pp. 76-85.

[7] J. Wang and F.H. Lochovsky, “Data Extraction and Label
Assignment for Web Databases,” Proc. Int‟l Conf. World Wide
Web (WWW-12), 2003, pp. 187-196.

[8] A. Arasu and H. Garcia-Molina. “Extracting structured data from
web pages,” In SIGMOD Conference, New York, NY, USA, 2003,
pp. 337–348.

[9] C.-H. Chang and S.-C. Lui, “IEPAD: Information Extraction Based
on Pattern Discovery,” Proc. Int‟l Conf. World Wide Web (WWW-
10), 2001, pp. 223-231.

[10] B. Liu, R. Grossman, and Y. Zhai. “Mining data records in web
pages,” In SIGKDD conference, New York, NY, USA, 2003, pp.
601–606.

[11] H. Zhao, W. Meng, and C. Yu. “Automatic extraction of dynamic
record sections from search engine result pages,” In VLDB
Conference, 2006, pp. 989–1000.

[12] H. Zhao, W. Meng, and C. Yu. “Mining templates from search
result records of search engines,” In SIGKDD Conference, New
York, NY, USA, 2007, pp. 884–893.

[13] A. Sahuguet and F. Azavant , “Building intelligent Web
applications using lightweight wrappers,” Data and Knowledge
Engineering 36(3): 283-316, 2001.

[14] L. Liu , C. Pu, and W. Han, “XWRAP: An XML-Enabled Wrapper
Construction System for Web Information Sources,” Proceedings of
the 16th IEEE International Conference on Data Engineering
(ICDE), San Diego, California, 2000, pp. 611-621.

[15] H. Zhao, W. Meng, Z. Wu, V. Raghavan, and C. Yu. “Fully
automatic wrapper generation for search engines,” In WWW
Conference, New York, NY, USA, 2005, pp. 66–75.

[16] K. Simon and G. Lausen , “Viper: augmenting automatic
information extraction with visual perceptions,” In CIKM
Conference, pages 381–388, New York, NY, USA, 2005.

[17] G. Miao, J. Tatemura, W.-P. Hsiung, A. Sawires, and L. E. Moser.
“Extracting data records from the web using tag path clustering,” In
WWW Conference, 2008, pp. 981–990.

[18] W. Liu, X. Meng, and W. Meng, “Vide: A vision-based approach
for deep web data extraction,” IEEE Transactionson Knowledge and
Data Engineering, 22:447–460, 2010.

[19] S. Chakrabarti, “Mining the Web: Discovering Knowledge from
Hypertext Data,” Morgan Kaufmann Publishers, 2002.

[20] Mohammed Kayed and Chia-Hui Chang, “FiVaTech: Page-Level
Web Data Extraction from Template Pages,” IEEE transactions on
knowledge and data engineering, vol. 22, no. 2 , pp. 249-263,
February 2010.

[21] A.H.F. Laender, B.A. Ribeiro-Neto, A.S. Silva, and J.S. Teixeira,
“A Brief Survey of Web Data Extraction Tools,” SIGMOD Record,
vol. 31, no. 2, pp. 84-93, 2002.

[22] http://www.dia.uniroma3.it/db/roadRunner/experiments.html.
[23] http://www.isi.edu/info-agents/RISE/repository.html.

Vinayak B. Kadam et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1403-1410

www.ijcsit.com 1410

